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An Accelerated Block Preconditioned Gradient (ABPG) method is proposed to solve elec-
tronic structure problems in Density Functional Theory. This iterative algorithm is
designed to solve directly the non-linear Kohn–Sham equations for accurate discretization
schemes involving a large number of degrees of freedom. It makes use of an acceleration
scheme similar to what is known as RMM-DIIS in the electronic structure community.
The method is illustrated with examples of convergence for large scale applications using
a finite difference discretization and multigrid preconditioning.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Fast iterative solvers for the Kohn–Sham (KS) equations are crucial to enable large-scale first-principles simulations. It is
particularly important for Born–Oppenheimer molecular dynamics simulations where the electronic ground state needs to
be calculated numerous times with a relatively high accuracy. Many different algorithms have been proposed in the physics
and chemistry literature. New algorithms or algorithm adaptations however are always in need as larger and larger problems
are being solved on modern parallel computers, using very accurate discretization schemes. This paper focuses on an iter-
ative algorithm designed for solving directly the non-linear KS equations for accurate discretization schemes involving a
large number of degrees of freedom. Such discretizations schemes include general numerical methods such as pseudo-spec-
tral – usually referred to as Plane Wave (PW) in the electronic structure community – Finite Difference (FD), or Finite Ele-
ment (FE) methods. For these numerical schemes the number of degrees of freedom to describe each electronic wave
function is typically large compared to approaches based on smaller (physics-based) basis sets such as Linear Combinations
of Atomic Orbitals (LCAO), but offers more flexibility, generality and a lower computational cost per degree of freedom. This
paper features numerical examples based on a FD approach. The iterative algorithm is however directly applicable to other
discretizations and will be presented in a general context. From a mathematical point of view, the discretization schemes
mentioned above result in large sparse matrices – indirectly through Fast Fourier Transforms for the PW method – and lead
to the use of matrix-free implementations of non-linear iterative solvers. As usual for this kind of approach, we assume
. All rights reserved.
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atomic potentials are replaced by smooth non-local pseudopotential approximations. These implicitly include the core elec-
trons not directly involved in chemical bonds. This makes many physical applications tractable using uniform meshes.

The first goal of this paper is to describe and analyze an iterative algorithm for solving the KS equations. But the aim is
also to demonstrate how it can be efficiently used to solve very large scale problems which are becoming tractable with
modern parallel computers and involve hundreds of eigenvalues. The algorithm can be described as an Accelerated Block
Preconditioned Gradient (ABPG) method. It makes use of a simple preconditioner – geometric multigrid for a real-space dis-
cretization – to build correction vectors. The acceleration scheme introduced by Anderson [1] is used to enhance conver-
gence of the gradient iteration. The basic algorithm was first introduced in the context of linear scaling methods with FD
discretization [8]. An interesting aspect of the algorithm presented here is indeed its direct applicability in the linear scaling
context, when electronic wave functions are confined to limited regions in space. It is so because no Rayleigh–Ritz procedure
is required in ABPG. The method was also applied later in the context of a finite elements discretization [9], but limited to
rather small problems. This paper illustrates how this algorithm can be rather efficient for large scale problems in the context
of standard OðN3Þ approaches.

The idea of using an extrapolation scheme to accelerate convergence of an iterative scheme in electronic structure calcu-
lations goes back to Pulay [20] in 1980. He gave the name DIIS for Direct Inversion of the Iterative Subspace to his approach.
Related algorithms are also found under the name ‘‘Pulay mixing”. While Pulay described his original approach for extrap-
olating a Fock matrix based solution of a self-consistent calculation – represented in a space spanned by a set of local atomic
orbitals – the name DIIS was later used in the community for various extrapolation algorithms.

In this paper, the focus is on using an extrapolation scheme to accelerate the calculation of the wave functions solution to
the Kohn–Sham (KS) equations. For this purpose, Wood and Zunger [23] described an algorithm they call ‘‘RMM-DIIS”, attrib-
uted to Bendt and Zunger. This algorithm uses the DIIS extrapolation scheme to minimize the residual of an eigenvalue prob-
lem associated to a targeted eigenpair, for a fixed Hamiltonian operator. Hutter et al. [13] proposed an adaptation of DIIS for
the Kohn–Sham equations discretized in a Plane Waves basis set. They use the DIIS extrapolation scheme to directly solve the
non-linear KS equations by minimizing preconditioned residuals. The RMM-DIIS idea was also used by Kresse and Furthmu-
eller in the Plane Waves context [15]. They use RMM-DIIS as a solver for the surrogate problem associated with the linear-
ized (frozen) Hamiltonian to be solved at each step of an iterative – self-consistent (SC) – process. The iterative solution of
the full non-linear problem is then calculated using a mixing scheme (outer loop) to generate a better trial solution from a
linear combination of the wave functions obtained at the most recent SC steps. The use of DIIS for calculating the wave func-
tions solutions of the Hartree–Fock equations in a Gaussian basis sets is discussed in [10]. The possibility of formulating DIIS-
type algorithms as accelerated inexact Newton schemes was pointed out by Harrison in [12]. Similar extrapolation schemes
written under the ‘‘Anderson” form [1] were also used in the electronic structure community, for instance to accelerate self-
consistent iterations by extrapolating potentials obtained at successive iterations [16]. The similarities between the Ander-
son extrapolation scheme and variants of Broyden’s method in the context of electronic structure calculations were exten-
sively discussed by Eyert [6].

While formulated in the form proposed by Anderson [1], the basic extrapolation idea used in our algorithm is closely re-
lated to the one used in the RMM-DIIS method (see Appendix A). Unlike [15] however, the method presented here attempts
to solve directly the non-linear KS problem, without intermediate surrogate problems. That means our extrapolation scheme
involves wave functions and residuals computed with the full non-linear Hamiltonian and not a surrogate Hamiltonian. The
two algorithms also differ considerably for the case of multiple eigenvalues/eigenfunctions. The algorithm described here
uses a block approach: all the electronic wave functions are updated simultaneously, using a single extrapolation step. Unlike
[13] where extrapolation is performed on Ritz vectors, our approach is formulated for a general representation of the
searched invariant subspace in a basis of non-orthogonal wave functions.

After introducing notations and formulating the Kohn–Sham (KS) equations in terms of non-orthogonal wave functions in
Section 2, our iterative algorithm is described in Section 3. Details and practical implementation of the algorithm are pre-
sented in Section 4. The numerical examples in Section 5 illustrate how the algorithm can be applied very efficiently to solve
large scale problems which require the computations of over a thousand eigenvalues.
2. Density Functional Theory

We consider the DFT energy functional written as a functional of N orthonormal electronic wave functions wi (KS model)
EKS fwig
N
i¼1

h i
¼
XN

i¼1

Z
X

wiðrÞð�DwiÞðrÞdr þ
Z

X

Z
X

qðr1Þqðr2Þ
jr1 � r2j

dr1 dr2 þ EXC ½q� þ
XN

i¼1

Z
X

wiðrÞðVextwiÞðrÞdr; ð1Þ
where q is the electronic density defined by
qðrÞ ¼
XN

i¼1

jwiðrÞj
2 ð2Þ
(see for example [3]). EKS is made of the sum of the kinetic energy of the electrons, the Coulomb interaction between elec-
trons, the exchange and correlation electronic energy, and the energy of interaction of the electrons with the potential
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generated by all the atomic cores Vext . Given an external potential Vext – defined by the various atomic species present in the
problem, their respective positions and pseudopotentials – the ground state of the physical system is obtained by minimiz-
ing the energy functional (1) under the orthonormality constraints
Z

X
wiðrÞwjðrÞ ¼ dij; i; j ¼ 1; . . . ;N: ð3Þ
To avoid mathematical difficulties irrelevant to the present study, let us assume from here on that we have to solve a prob-
lem in a finite dimensional space of dimension M resulting from the discretization of the above equations. To be concrete,
suppose that we have a finite difference discretization on a uniform mesh with periodic boundary conditions, and thus the
functions wi are M-dimensional vectors with components corresponding to their values at the mesh points, wi;k ¼ wiðrkÞ. Let
Lh denote the finite difference approximation of the Laplacian operator. Without loss of generality, wave functions are as-
sumed to take real values only.

One can derive the Euler–Lagrange equations associated to the minimization problem (1) with N2 Lagrange parameters
corresponding to the orthonormality constraints (3). One obtains the so-called Kohn–Sham equations in their usual form for
the particular choice of the functions fwig

N
i¼1 which diagonalizes the matrix made of the Lagrange parameters,
� Lhwi þ VKS½q�wi ¼ kiwi;

qðrkÞ ¼
XN

i¼1

jwiðrkÞj2;

XM

k¼1

wiðrkÞwjðrkÞ ¼ dij;

ð4Þ
where VKS is a discretized non-linear effective potential operator (see e.g. [3]). In this approach, one has to find the N lowest
eigenvalues ki; i ¼ 1; . . . ;N and the corresponding eigenfunctions. We assume here that kNþ1 � kN > 0:

Let V denote the set of matrices of M rows and N columns. We can represent the solution of the discretized problem as a
matrix
W ¼ ðw1; . . . ;wNÞ 2 V : ð5Þ
W represents the invariant subspace spanned by the eigenvectors associated to the N lowest eigenvalues. Using these nota-
tions, the KS equations are given by
�LhWþ VKS½q�W ¼ WK ð6Þ
where K is an N � N diagonal matrix with diagonal entries Kii ¼ ki; i ¼ 1; . . . ;N.
Let us assume that we know another representation of that same invariant subspace given by another set of N linearly

independent vectors,
U ¼ ð/1; . . . ;/NÞ 2 V : ð7Þ
One can find an N � N matrix C such that
W ¼ UC: ð8Þ
The matrix C satisfies
CCT ¼ S�1; ð9Þ
where S ¼ UTU, the Gram matrix, is of rank N. Using relations (8) and (9), one can express the electronic density in terms of
the matrix elements of U and S�1,
qk ¼
XN

i;j¼1

ðS�1ÞijUkiUkj; ð10Þ
where qk denotes the value of the electronic density at the mesh point xk. In this form we note that q is also independent of
the particular representation chosen for the search invariant subspace. Also the KS equations for U can be rewritten as
�LhUþ VKS½q�U ¼ US�1HU; ð11Þ
where HU ¼ UTð�Lh þ VKSÞU. For a trial solution U, the residual is given by
RðUÞ ¼ �LhUþ VKS½q�U�US�1HU: ð12Þ
It is easy to verify that
UT RðUÞ ¼ 0
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and that
RðUWÞ ¼ RðUÞW
for any non-singular N � N matrix W.
In this formulation, unlike more traditional approaches which include an additional equation to enforce orthonormality

as in Eq. (4), the columns of U constitute a general non-orthogonal basis of the trial invariant subspace. Some minimal cau-
tion needs to be taken to avoid cases where the columns of U become linear dependent. A general formulation based on non-
orthogonal wave functions is convenient to implement extrapolation algorithms such as the one described later in this pa-
per. It has also been used for conjugate gradient algorithm implementation in electronic structure calculations [22].

3. Accelerated Block Preconditioned Gradient for KS

The non-linear KS problem can be written as
RðUÞ ¼ �LhUþ VKS½q�U�US�1HU ¼ 0: ð13Þ
To solve this equation, using our matrix notation, we write an inexact Newton iteration (see Appendix B) in the block form
(at step k)
Ukþ1 ¼ Uk � J�1
k RðUkÞ: ð14Þ
Here Jk is an M �M matrix, a diagonal block of an approximate Jacobian written in a block diagonal form
eJk ¼

Jk 0 � � � 0
0 � � � � � � � � �
� � � � � � � � � 0
0 � � � 0 Jk

0BBB@
1CCCA:
This ‘‘block” form considerably simplifies our approach as we assume one can find a good approximate Jacobian independent
of the particular function /i (or column of U) we are correcting. That is also the key which lets us design an algorithm tar-
geting the invariant searched subspace independently of its representation.

Let
Pk ¼ �J�1
k RðUkÞ; ð15Þ
denote the subspace correction computed at step k.
The simplest approximate Jacobian Jk one could use is the identity scaled by a factor
Jk ¼ gI:
In the language of eigensolvers, it leads to a block shifted power method (see e.g. [2, Section 11.3]). It is also called a gradient
method for computing the smallest eigenvalue since R is collinear to the gradient of the Rayleigh quotient. Such an approach
can be substantially improved if a good preconditioner T is available by choosing
Jk ¼ T:
Iteration (14) then becomes a block preconditioned gradient iteration. For a linear positive definite operator A, Neymeyr [17]
demonstrated convergence to the invariant subspace spanned by the eigenvectors associated to the lowest N eigenvalues of
A. The main assumptions are that kNþ1 > kN and T is a good approximation of A in the sense that
kI � TAkA 6 c
for c 2 ð0;1Þ. In practice, due to numerical rounding errors, this iteration converges for randomly generated initial trial sub-
spaces. For an appropriate choice of the preconditioner, this algorithm can lead to a mesh independent convergence rate
with a very low cost iteration. For KS equations discretized on a mesh or in Plane Waves, a good option is to use a precon-
ditioner T which approximates ð�LhÞ�1 in the high-frequency domain. For the numerical results presented in Section 5, we
will use the multigrid preconditioner proposed in [7]. It is also easy to see that this block preconditioned gradient iteration
leads to successive subspaces independent of the particular representation used for the initial subspace [7].

Newton’s method is a one-step method which uses information only from the current step to improve a trial solution.
This would be fast enough if we were considering an accurate solver for the Newton iteration. In the inexact Newton method
case however, convergence rate is usually only linear, and acceleration can be achieved using information accumulated dur-
ing the previous m steps, to build an improved trial solution. Such an approach is referred to as an Accelerated Inexact New-
ton (AIN) method [11]. Instead of simply adding the correction Pk to the current approximation Uk, the idea is to use the
knowledge accumulated during the m previous inexact Newton steps to build a better update. Let
Vk;m :¼ ½Uk�m; Pk�m; . . . ;Uk; Pk� ð16Þ



J.-L. Fattebert / Journal of Computational Physics 229 (2010) 441–452 445
be a search space. An improved update for Uk would be
Uk ¼ Vk;my; ð17Þ
where y 2 Rð2mþ2ÞN is the solution of a projected problem in Vk;m.
Fokkema et al. [11] proposed various conditions (projected problems in appropriately chosen search subspace) to deter-

mine the vector of coefficients y: a Galerkin condition, a minimum residual condition, or a mix of both. In the Davidson–Liu
algorithm [4] for instance, one would solve a Galerkin problem in the space
Vk;DL ¼ ½Uk; Pk�:
In LOBPCG [14], one would solve instead a Galerkin problem in the space
Vk;LOBPCG ¼ ½Uk�1;Uk; Pk�
to get the optimal solution within this subspace. However, an optimal algorithm has to take into account some of the fea-
tures specific to DFT calculations: a non-linear operator and a large number of eigenpairs to compute. Yang et al. [24] pro-
posed to generalize LOBPCG and solve iteratively a non-linear 3N � 3N problem in Vk;LOBPCG. This is a very robust approach.
However, building multiple times 3N � 3N matrices, with elements made of dot products between pairs of M-dimensional
vectors, becomes quite costly for large scale problems.

Here we use a much less computationally demanding method based on minimizing an extrapolated preconditioned resid-
ual. In [1], Anderson proposed an extrapolation based on the solution of a projected linear problem defined by the residuals
computed at the m previous steps. The basic idea is to write an extrapolation scheme for U, using the approximations at the
previous m steps,
Uk :¼ Uk þ
Xm

j¼1

hjðUk�j �UkÞ; ð18Þ
where the columns of U are assumed to be normalized at each step. Asymptotically and at first order, the same extrapolation
scheme holds for the residual RðUÞ, and thus for the preconditioned residual P ¼ �TR. Thus we write
Pk :¼ Pk þ
Xm

j¼1

hjðPk�j � PkÞ: ð19Þ
Assuming that Pk is a good approximation of the error associated to a trial solution Uk we define the real coefficients hj as
those minimizing the norm of Pk. For that we use the norm k � kB corresponding to the dot product ð�; �ÞB defined in the space V
of M � N matrices as
ðQ T ;QÞB :¼
XN

i¼1

ðB�1ÞiiqT
i qi: ð20Þ
Here qi denotes the column i of Q. B is a positive definite N � N matrix which we set to B ¼ UT
kUk at step k. The justification

for using this norm is detailed in Appendix C. The coefficients hj can be then found by solving the m�m linear system de-
fined by
Xm

j¼1

ðPk � Pk�i; Pk � Pk�jÞBhj ¼ ðPk � Pk�i; PkÞB; i ¼ 1; . . . ;m: ð21Þ
Finally, the new trial solution in Vk;m is computed as
Ukþ1 ¼ Uk þ bPk;
where 0 < b 6 1 is an additional parameter. In the examples presented in Section 5, we always use b ¼ 1 as recommended in
[1]. Smaller values could be considered if necessary for applications with extremely strong non-linearity.

Note that according to Appendix A, Eq. (21) can be regarded as a linearized minimum (preconditioned) residual condition
min
c2Rmþ1 ;kck¼1

Xm

j¼0

cjPðUk�jÞ
�����

�����
B

;

and thus a block variant of the RMM-DIIS extrapolation scheme for a non-linear eigenvalue problem.

4. Practical implementation

Since the ABPG algorithm makes use of a residual minimization for an eigenvalue problem, there is a risk of converging
towards interior eigenvalues. Indeed the residual of an eigenvalue problem is zero for any eigenpair. To remedy this issue,
extrapolation is turned off if the trial solution is too far away from convergence. This reduces ABPG to a block preconditioned
gradient iteration in the initial steps when no good trial solution is known.
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Another common issue observed in electronic structure problems solving with ABPG is the local non-convexity of the
energy surface. In that case minimizing the residual would lead towards an energy maximum. Such a potential problem
can be detected by examining the extrapolation coefficients hj. Indeed let us consider for example the case m ¼ 1 and as-
sume the energy functional EKS is a quadratic function along the search direction. Let us also assume that
EKS½Uk� < EKS½Uk�1�. If the energy functional is convex, then a proper extrapolation should lead to h1 < 0:5 (indeed
h > 0:5 would mean extrapolating back along the search direction beyond the mid-point between the states k� 1 and
k which would not be compatible with a quadratic function and an energy decrease going from k� 1 to k). This suggests
that one should discard coefficients larger than 0.5. For coefficients larger than 1, we actually assume local concavity and
use an extrapolation coefficient h1 ¼ �0:5. We also treat with precaution coefficients smaller than �3 corresponding to
very large extrapolation.

The complete procedure is detailed in Algorithm 1. One notices in particular that ABPG can be implemented with only one
full Hamiltonian matrix application per iteration and per wave function. Other costly operations for large scale problems in-
clude building the matrices S and HU, and potentially applying the preconditioner T.

Algorithm 1. Accelerated Block Preconditioned Gradient (ABPG)

k( 0; ~m( 0; V�1 ( ½ �
Set U0 to initial guess
Compute S ¼ UT

0U0; q0; VKS½q0� and HU ¼ UT
0H0U0

R0 ( HkU0 �U0S�1HU

repeat
Pk ( �TRk

Vk ( ½Vk�1;Uk; Pk�
flag ( true
while flag and ~m > 0

flag ( false
if dimðspanðVkÞÞ > 2ð ~mþ 1ÞN then

remove left 2N columns of Vk

end if
Build linear system (21)
if cond(linear system) < 100 then

Solve linear system (21) to determine hj; j ¼ 1; . . . ; ~m
if maxjðhjÞ > 0:5 or minjðhjÞ < �3 then

if ~m > 1 then
~m( ~m� 1; flag ( true {Reduce history length}

else
if h1 > 1 then

h1 ( �0:5 {Fixed extrapolation for concave region}
end if
h1 ( minðmaxðh1;�3Þ;0:Þ {Limit extrapolation}

end if
end if

else
~m( ~m� 1; flag ( true {Reduce history length}

end if
end while

y 2 R2ð ~mþ1ÞN

for i ¼ 1 to N do

yðiÞ ¼ 1�
P ~m

j¼1hj; yðiþ NÞ ¼ byðiÞ
end for
for j ¼ 1 to ~m do

for i ¼ 2jN þ 1 to 2jN þ N do
yðiÞ ¼ hj; yðiþ NÞ ¼ byðiÞ

end for
end for
Ukþ1 ( Vky
k( kþ 1
Update S ¼ UT

kUk; qk; VKS½qk� and HU ¼ UT
k HkUk

Rk ( HkUk �UkS�1HU

until kRkk < tol
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For the particular case of a finite difference discretization used in this paper, this algorithm can be efficiently parallelized
using a standard domain decomposition approach. Each processor is then responsible for the data associated to the pieces of
the wave functions located in a particular subdomain. Finite difference operations then require local inter-processors com-
munications to fill up ‘‘ghosts” values at subdomain boundaries. Global inter-processors communications are needed to sum
up local contributions for each matrix elements and build matrices such S; HU and the linear system (21). This approach was
implemented in a C++/MPI code (MGmol) developed by the author and used for the numerical experiments presented in Sec-
tion 5. The parallel library ScaLapack is used for linear algebra operations on N � N matrices.
5. Numerical results

As a first illustration, let us consider a simple eigenvalue problem
Fig. 1.
accelera
Au ¼ ku;
where A is a real symmetric M �M matrix. Without loss of generality, we can assume A diagonal. Suppose the diagonal ele-
ments of A are given by aii ¼ ki ¼ i for i ¼ 0; . . . ;M � 1. Let us consider the problem of finding the lowest eigenvalue k0 ¼ 0
and the associated eigenvector u0 ¼ ð1;0; . . . ;0ÞT . We start with an initial guess given by ~u0 ¼ ð0:447;0:894; . . . ;0ÞT , that is
with non-zero components along the eigenvectors corresponding to the lowest two eigenvalues.

Let M ¼ 10 and set m ¼ 1; T ¼ 1=kmax � I where kmax is the largest eigenvalue of A. For this simple problem the energy is
the Ritz value associated with the current iterative solution ~u. It is also a measure of the error during the ABPG iterations. We
plot the energy as a function of the angle between ~u and u1 – in the plane defined by u0 and u1. The solution is reached for an
angle of p=2. Results are shown in Fig. 1. It can be observed that initial iterations are not very efficient. This is due to the fact
that the preconditioner is not very good and the trial solution is in a concave region. But as soon as the convex region is
reached, acceleration quickly leads to the solution.

Let us now illustrate the efficiency of ABPG in real DFT application. For all the applications presented below, we used a
fourth order standard finite difference scheme to discretize the KS equations on a uniform mesh. The Local Density Approx-
imation (LDA) exchange and correlation functional was used together with norm-conserving pseudopotentials. We also as-
sume each electronic wave function is occupied by two electrons of opposite spin. All the numerical experiments shown
below were carried out on Thunder, a Linux cluster system at Lawrence Livermore National Laboratory (Intel Itanium2 Ti-
ger4 1.4 GHz with Quadrics interconnect).

The first DFT application consists of calculating the ground state of a silicon cluster passivated with H atoms at the surface
ðSi35H36Þ. The problem is discretized on a uniform mesh 64� 64� 64 with a mesh spacing h ¼ 0:5 Bohr. Convergence for the
total energy and the residual defined by Eq. (12) is shown in Fig. 2 using ABPG with various history lengths m. The case m ¼ 0
corresponds to a block preconditioned gradient iteration with no acceleration. The trial wave functions were initialized as
Gaussian functions centered on atomic bonds. The numerical results show that the effect of acceleration is quite important
for m ¼ 1 and m ¼ 2. Going beyond m ¼ 2 does not help much. For m ¼ 0, the wall clock time was 3.5 s/step using 16 pro-
cessors. Adding acceleration, the overhead in computer time was about 10% for m ¼ 1, going up to 25% for m ¼ 3. In Fig. 2
and following, the norm refers to the k � kB norm introduced in Section 3.

To illustrate the applicability of the algorithm described in this paper to really large problems, we consider the calculation
of the electronic structure of a silicon crystal of 512 atoms. In a typical pseudopotential DFT calculation for this system, one
has to compute 1024 wave functions. The problem is discretized on a uniform 64� 64� 64 mesh. Wave functions were ini-
tialized as Gaussian functions centered on bonds. Convergence of ABPG is shown in Fig. 3. The wall clock time for m ¼ 0 was
measured at 180 s/step using 32 processors, with an overhead of only 1% for m ¼ 1.

Problems involving dangling bonds are typically more difficult to solve than the two previous examples – which had fully
saturated bonds – and iterative algorithms usually converge slower towards the ground state. To illustrate the efficiency of
the ABPG algorithm on such problems, it is applied to the ground state calculation of a diamond C(100) surface. A slab made
Convergence of ABPG algorithm for search of lowest eigenvalue of matrix A (see text). Arrows denote magnitude of gradient at each trial solution. No
tion is performed until the convex region is reached.
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Fig. 2. Convergence of energy and residual for Si35H36 cluster for various history length (m).
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of 12 layers of C atoms was used, with one surface terminated by a layer of H atoms to passivate the dangling bonds and the
other surface reconstructed, as proposed for instance in [25]. The unit cell was repeated four times along each of the two axis
parallel to the surface, making it a 416 atoms system, with 784 electronic wave functions to compute. The mesh used was
made of 144 grid points in the direction orthogonal to the slab, and 96� 96 in the plane parallel to the surface, for a mesh
spacing h ¼ 0:28 Bohr. Fig. 4 shows the convergence of the ABPG algorithm for a 2� 1 reconstructed surface. Compared to
the two previous examples, a slower but quite good convergence rate is observed. Using 108 processors for this calculation,
the wall clock time was 83 s/step for m ¼ 0. For m ¼ 1, the overhead was about 2.5 s/step.

In practical applications, the electronic structure ground state often needs to be computed many times for slightly differ-
ent atomic configurations. This is the case for molecular dynamics (MD) simulations or geometry optimizations where the
electronic structure is used to evaluate forces acting on atoms at each step of the atomic configuration trajectory. In that case
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Fig. 4. ABPG Convergence for reconstructed (100) diamond surface (N = 784).
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the initial trial wave functions are provided by the solution computed for the previous atomic configuration or an extrapo-
lation using a few additional previous time steps. The problem then becomes to quickly reach the new ground state for a
slightly different Hamiltonian. The performance of ABPG in this situation is illustrated in Fig. 5. It shows the convergence
of the residual for five consecutive steps of molecular dynamics of liquid water at ambient conditions (64 molecules cell,
mesh 128� 128� 128). At each MD step k, wave functions are initialized with an initial guess given by
eUk ¼ 2Uk�1 �Uk�2;
where Uk�1 and Uk�2 are the solutions obtained for the atomic configurations k� 1 and k� 2. For the iterations shown in
Fig. 5, m ¼ 1 and Anderson extrapolation is performed at every step except for the first step after an update of the atomic
positions. The jumps in residual correspond to atomic configurations updates. The measured wall clock time for each ABPG
step was 33 s using 64 processors.

6. Concluding remarks

This paper describes an Accelerated Block Preconditioned Gradient method to solve electronic structure problems in
Density Functional Theory. The iterative algorithm is designed to solve directly the non-linear Kohn–Sham equations
for accurate discretization schemes involving a large number of degrees of freedom. It makes use of a scheme similar
to RMM-DIIS, using approximate solutions and preconditioned residuals from the m previous iterative steps to accelerate
convergence.

As seen from the numerical results presented in the previous section, small values of m are usually appropriate for the
ABPG algorithm. The optimal value for m depends on the preconditioner T, but m ¼ 1 or m ¼ 2 are often good values. Using
larger values often results in bad conditioning for the linear system (21) and m being cut automatically (see Algorithm 1).

A major assumption for the ABPG algorithm to work well is to have a band gap in the eigenvalues spectrum, kN < kNþ1. If
kN ¼ kNþ1, extrapolation is not valid anymore for residuals corresponding to Ritz vectors associated to the eigenvalues close
to kN . One way to remedy this issue is to use the single particle density matrix at finite temperature for B in the definition of
the dot product ð�; �ÞB (Eq. (20)) in order to progressively decrease the weight of the contributions coming from the Ritz vec-
tors associated with eigenvalues close to kN . Further study is needed for this problem.
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Appendix A. Extrapolation coefficients

To determine extrapolation coefficients at step k of a DIIS iterative process [20], an extrapolated error vector �ek is
introduced
�ek ¼
Xm

i¼0

ciek�i:
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It is made of a linear combination of the estimated current error ek and the estimated errors at the previous m steps. The
coefficients ci are determined by requiring that the 2-norm of �ek is minimized under the constraint
Xm

i¼0

ci ¼ 1: ðA:1Þ
This leads to a system of mþ 2 linear equations for the mþ 1 coefficients ci and the Lagrange parameter associated with the
constraint.

A similar extrapolation scheme had been proposed earlier by Anderson [1] for solving more general non-linear equations.
Anderson writes
�ek ¼ ek þ
Xm

1¼1

hiðek�i � ekÞ:
The latter equation can also be written as
�ek ¼ 1�
Xm

1¼1

hi

 !
ek þ

Xm

1¼1

hiek�i:
Thus, the equivalent DIIS coefficients are given by
ci ¼ hi; i ¼ 1; . . . ;m;

c0 ¼ 1�
Xm

1¼1

hi;
and clearly satisfy the constraint (A.1). The relation between the two formulations can actually be used as a way to eliminate
one variable when solving the DIIS equations [15,18].

The particular choice of the error function varies depending on the specific quantity one tries to minimizes: residual of
eigenvalue problem, computed iterative correction, electronic density self-consistent updates, or even atomic forces in
geometry optimizations.

Appendix B. Inexact Newton method for eigenvalue problems

We consider the general non-linear equation
FðuÞ ¼ 0; ðB:1Þ
where F is some smooth non-linear functional defined in a finite dimensional space V 2 Rm, where m is typically very large.
One type of such equations is
AðuÞ ¼ kðuÞu; ðB:2Þ
with kðuÞ ¼ ðu;AuÞ=ðu;uÞ, and A is a non-linear operator. The non-linearity of A – a specific feature of Density Functional The-
ory equations – often leads to look beyond standard eigensolvers for an efficient solution of this problem.

Newton’s method is a well known iterative approach to solve non-linear equations such as (B.1) (see e.g. [19]). One basic
iterative step to improve an approximate solution uk at step k can be written as
ukþ1 ¼ uk � J�1
k FðukÞ; ðB:3Þ
where Jk :¼ F 0ðukÞ. Thus we can write a linear equation for the correction p of uk,
Jkpk ¼ �rk; ðB:4Þ
where rk ¼ FðukÞ. Unfortunately, the Jacobian Jk is often not available or is practically impossible to compute due to numer-
ical cost. It can also be computationally very expensive or impossible to solve exactly the linear system (B.4). For large m, it is
more practical to use an approximate Jacobian eJk, leading to an inexact Newton iteration [5]
ukþ1 ¼ uk � eJ�1
k FðukÞ: ðB:5Þ
The inexact correction equation can then also be solved approximately, by an iterative method such as multigrid for exam-
ple. Note that even if Eq. (B.4) is solvable, searching for an accurate solution may not be efficient if the quadratic model used
to derive the Newton equation differs significantly from the real behavior of FðuÞ.

If we are in a quadratic regime close to a solution �u, where rk ¼ Jkðuk � �uÞ, we have, using (B.5),
ukþ1 ¼ �uþ I �eJ�1
k Jk

� �
ðuk � �uÞ: ðB:6Þ
This simple iterative process converges if the eigenvalues of the matrix ðI �eJ�1
k JkÞ are of modulus smaller than 1. The con-

vergence rate obviously depends on the largest eigenvalues of ðI �eJ�1
k JkÞ and thus on how well eJk approximates Jk. Note that
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for an eigenvector search, since the solution is defined up to normalization factor, one should instead consider the projected
operator [21]
I � ukuT
k

� �
1�eJ�1

k Jk

� �
I � ukuT

k

� �
:

Appendix C. Matrix norm

Since we are interested in determining an invariant subspace and not a particular representation of that subspace, the
idea is to use a dot product leading to an iterative scheme independent of the particular choice of the basis used to represent
the search subspace. For Q 1; Q2 2 V , let us define
ðQ 1;Q 2ÞB :¼ Tr B�1Q T
1Q 2

� �
ðC:1Þ
for a given positive definite matrix B. Now if Uk is a particular representation of the trial search subspace at step k, we can
find a non-singular N � N matrix Ck which maps Uk into a matrix made of orthonormal columns, i.e. such that CT

kU
T
kUkCk ¼ I.

Ck also satisfies
CkCT
k ¼ UT

kUk

� ��1
:

Now if we choose B ¼ UT
kUk, we have
ðQ 1;Q 2ÞB ¼ Tr CkCT
k QT

1Q 2

� �
¼ Tr CT

k Q T
1Q 2Ck

� �
:

Thus the dot product ðQ 1;Q 2ÞB between two elements of V is defined as the standard Frobenius dot product after applying a
linear transform Ck to Q1 and Q2. Conveniently, this dot product is invariant with respect to any orthogonal transformation U
which maps UkCk into any other orthonormal representation UkCkU of the trial search subspace, and thus does not depend on
the particular choice of Ck.

The net result of using this dot product is that if all the matrices Uk�j; j ¼ 0; . . . ;m were to be transformed by multipli-
cation on the right by a non-singular matrix eC , the extrapolation scheme would result in the same subspace, although rep-
resented by Uk

eC instead of Uk. Since the block preconditioned gradient iteration is also independent of the particular
representation used for the subspace, the whole iteration becomes representation independent by setting B ¼ UT

kUk at each
step k.

In practice, the evaluation of the dot product ð�; �ÞB defined in (C.1) becomes quite expensive for large N since it involves N2

dot products between vectors of length M. Thus the approximation
TrðB�1Q T QÞ �
XN

i¼1

ðB�1ÞiiqT
i qi
is used (see Section 3). It requires only N dots products. (Here qi denotes the column i of Q.) This approximation becomes
exact if Uk is made of orthogonal vectors and B ¼ UT

kUk is diagonal. If vectors are orthogonalized at regular intervals, this
approximation remains very good. For instance, if orthonormalization is performed once after every update of the atomic
positions in a molecular dynamics simulation, this is sufficient to effectively have no visible effect on the convergence rate.
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